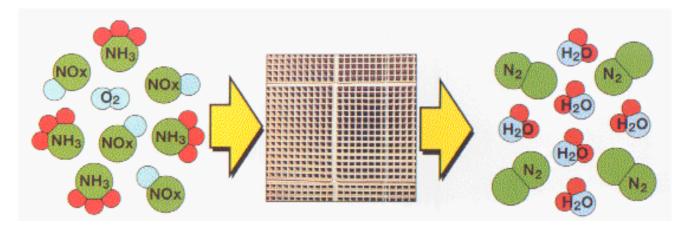
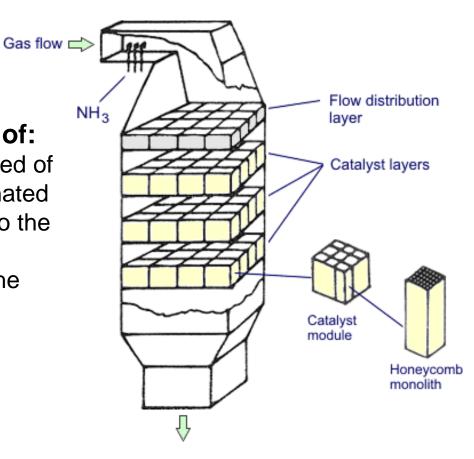
Reduction of NOx Emission in Cement Plants with the SCR Technology (Selective Catalytic Reduction)



Josef Waltisberg dipl.Ing. ETH Eichhaldenweg 23 CH-5113 Holderbank / Switzerland josef@waltisberg.com

Selective Catalytic Reduction

1.) Reduction of Nitrogen Oxides (NOx) with the help of a Catalyst


2.) Reduction of other Exhaust Gas Components on the same Catalyst (e.g. NH₃, CO, VOC, PAH, PCB, «Dioxins»)

Catalysts

The Catalyst used in SCR Applications usually consists of:

- a monolithic honeycomb composed of a ceramic substrate with impregnated catalyst homogenously mixed into the catalyst material; or
- catalyst materials deposited on the surfaces of a ceramic substrate supported on a flat or corrugated plate.

Catalysts

The Metal Oxides

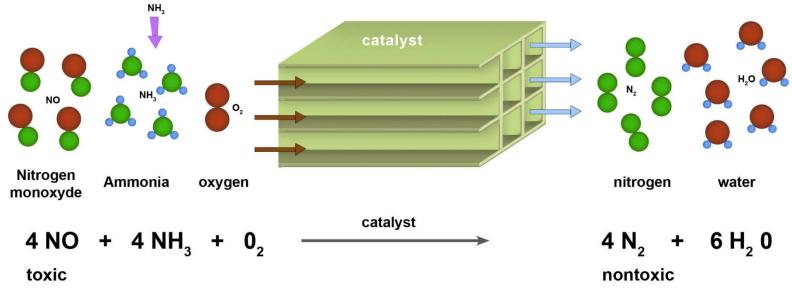
The metal oxide acts as a porous base with a high surface area-to-volume ratio created by the presence of microscopic pores within the metal oxide base. On this metal oxide base, typically titanium dioxide (TiO₂), one or more metal oxide catalysts are deposited in various concentrations. In SCR applications, the active catalyst material typically consists of vanadium pentoxide (V₂O₅), tungsten trioxide (WO₃), and molybdenum trioxide (MoO₃) in various combinations.

Tailored Composition

- The composition, also known as formulation, is tailored by the catalyst vendor to best suit a particular SCR application.
 - Some catalyst formulations are more reactive (typically those with higher V₂O₅contents)
 - Some limit SO₂ oxidation (typically those with higher WO₃ content and lower V₂O₅ contents)
- JW

Waltisberg Consulting

- $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$
- Some (such as those with higher MoO₃ contents) are less vulnerable to the poisoning effects of specific species (e.g. heavy metals; thallium) in the exhaust gas stream.


Chemical Reactions on Catalyst

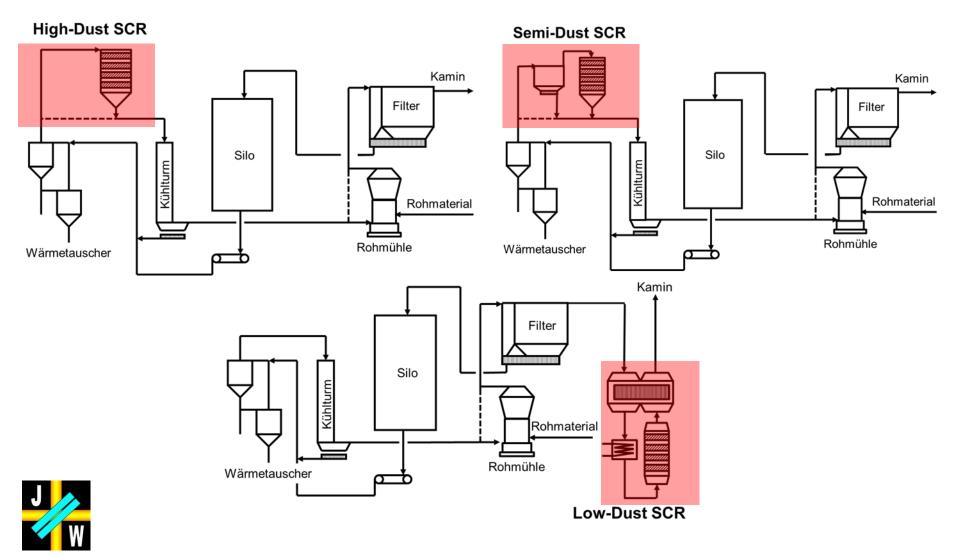
Main Reaction with NO (Equation 1):

NO and reagent ammonia (NH₃) react in the presence of a catalyst to molecular nitrogen (N₂) and water vapor (H₂O):

$4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$

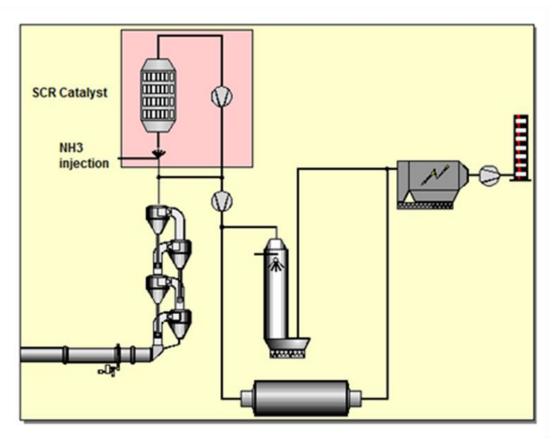
Ammonia must be stored in the micro-pores of the catalyst before NO is reduced. Since the catalyst elements store ammonia in their micro-pores to a certain extent, ammonia is not necessarily consumed immediately upon injection. Conversely the reaction can proceed for some time after discontinuing injection. The catalyst itself is not a reactant and is not consumed in the process.

Chemical Reaction on Catalyst


Reaction with NO₂ (Equations 2 and 3):

NO₂, present in very low concentration in cement exhaust gases (<< 5 [%] of NOx), is also reduced in a manner similar to the reduction of NO: $6 \text{ NO}_2 + 8 \text{ NH}_3 \rightarrow 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$ $2 \text{ NO}_2 + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$

- Reaction wit SO₂ (Equation 4): Also a reaction with SO2 can occur $2 SO_2 + O_2 \rightarrow 2 SO_3$
- Reaction with Volatile Organic Compounds VOC (Equation 5): $4 C_n H_m + (4n + m) O_2 \rightarrow 4n CO_2 + 2m H_2O$
- Reaction with «Dioxins» (Equations 6 and 7): $C_{12}H_nCI_{8-n}O_2 + (9 + 0.5n) O_2 \rightarrow (n - 4) H_2O + 12 CO_2 + (8 - n) HCI$ $C_{12}H_nCI_{8-n}O + (9.5 + 0.5n) O_2 \rightarrow (n - 4) H_2O + 12 CO_2 + (8 - n) HCI$



Types of SCR Systems

Waltisberg Consulting

«High-Dust-» and « Semi-Dust» Solutions

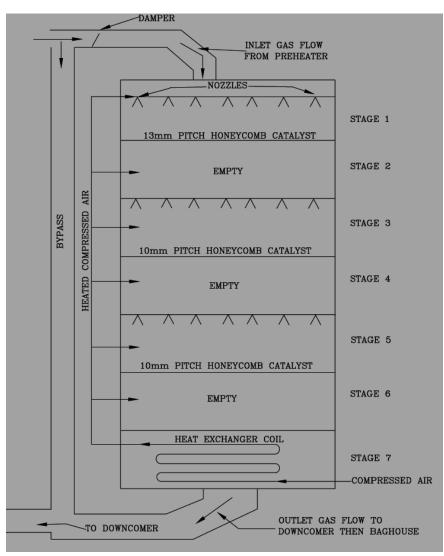
Catalyst just behind the Preheater:

- High dust content (order of magnitude: 10 to 80 [g/m³])
- Gas temperature more or less in the optimal range (300 to 350 [°C])

Examples:

- Solnhofner Portland Zement AG, Germany
- Cementeria di Mont Selice, Italy
- Schwenk Zement KG, Mergelstetten, Germany

« High-Dust-Solution » Solnhofner Portland Zement AG Germany



Design of Catalyst Unit

Construction with 6 catalyst layers; but only 3 charged

- The first SCR layer contains honeycomb catalyst with a 13 [mm] pitch.
- The second layer is empty.
- The third layer contains honeycomb catalyst with 10 [mm] pitch.
- The fourth layer is empty.
- The fifth layer contains honeycomb catalyst with 10 [mm] pitch.
- The sixth layer is empty.

Technical Data

First Full-Scale-Installation in Germany

Kiln

Normal prehater kiln without precalciner; production 1600 [t/Tag]

SCR-Installation

- Supplier: CemCat (ELEX)
- Commissioning: 2001
- Each catalyst bed contains six modules. Each of these modules contains 144 catalyst elements in a 12 x 12 arrangement. The total depth of each catalyst layer is 900 [mm].
- Catalyst produced by KWH Katalylists GmbH, 45136 Essen (Germany)
 - Guaranteed lifetime: 2 years
 - Expected lifetime: 3 4 years
 - After 4 1/2 years (January 2006) the catalyst was replaced
 - It is assumed that the catalyst could reach a lifetime of 5 to 6 years

Waltisberg

Consulting

The Full-Scale SCR plant in Solnhofen was taken out of service again after a few years because of the extensive catalyst purification and the threshold value of 500 [mg/Nm³] achievable with SNCR

«High-Dust-Solution» Cementeria di Mont Selice (Italy)

Literature:

582&Load=true

High Dust SCR Succeeds at Cementeria di Monselice (I) Ulrich Leibacher, ELEX, Schwerzenbach (CH); Clemente Bellin, Cementeria di Monselice SpA (I) and A.A. Linero, P.E., Tallahassee, Florida (USA) www.aramis.admin.ch/Default.aspx?DocumentID=

Kiln System and Catalyst Unit


Kiln system

Capacity:

Preheater:

Fuels:

2400 [t/day] (design) 1800 [t/day] (effective) 5 stages without precalcination Exit temperature 320 – 350 [°C] 80 [%] petcoke + 20 [%] coal

Installation from CemCat (ELEX)

Catalyst

Layers:

Material:

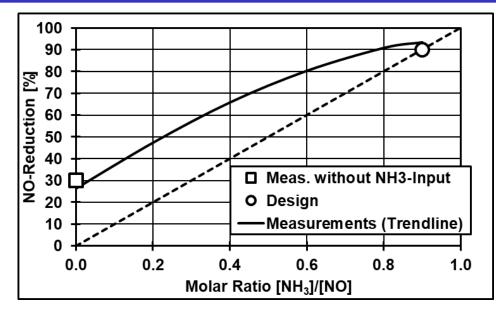
6, 1 in reserve only 3 are loaded (smaller production) V_2O_5 as active metal (and other metals) TiO₂ as ceramic base

Test Results 2006

Parameter		Design	Actual	
Kiln production	[t/Tag]	2400	1800	
Volume stream gas	[m ³ /h] 1)	160000	110000	
NOx exit preheater	[mg/m ³] 2)	2260	1530	1071
Molar ratio	[NH ₃]/[NO]	0.905	0.98	0.2
NOx exit catalyst	[mg/m ³] 2)	232	75	612
NOx chimney	[mg/m ³] 2)	200	50	408
NOx reduction	[%]	90	95	43
NH₃ slip	[mg/m ³] 2)	< 5	< 1	< 1
O2 inlet catalyst	[%]	2.5	2.7	
O ₂ chimney (direct)	[%]	5	7.1	
O ₂ chimney (compound)	[%]		8.8	
Pressure loss	[mbar]	15	< 5	
NH ₄ OH (25 [%] solution)	[kg/h]	445	204 34	

- Standard conditions (1013 [mbar], 0 [°C] wet gas
- Standard conditions (1013 [mbar], 0 [°C] dry gas, actual O₂ content

Results after 1 Year of Operation


- Operation time since March 2007:
- Availability:
- NOx Reduction during test period:
- NH₃ during test period:
- VOC Reduction: (Volatile Organic Compounds)
- Other effect:
- Cost for 90 [%] Reduction:

> 7000 [h]
nearly 100 [%]
up to 97 [%]
< 1 [mg/m³]
75 [%]

significantly less odor 1 – 1.3 [€/t Clinker]

Results during Operation

- Measured values (Trendline) > than theoretical line (dotted line) Without NH₄OH input into SCR equipment, the reduction is the range of 30 [%] reduction
- Ammonia in exhaust gas before the installation of the SCR system was measured at 50 - 150 [mg/m³] (odor problems round the plant). This ammonia of raw material origin is completely consumed in the SCR process thus reducing the emissions. This conveniently results in a molar ratio (injected [NH₃]/[NO]) less than unity.

Consulting

«High-Dust-Solution» Schwenk, Mergelstetten (Germany)

Literature:

BMU-Umweltinnovationsprogramm; Abschlussbericht zum Vorhaben Minderung von NOx-Emissionen in einer Drehofenanlage mittels SCR-Technologie Detlef Edelkott und Jürgen Thormann, Schwenk Zement

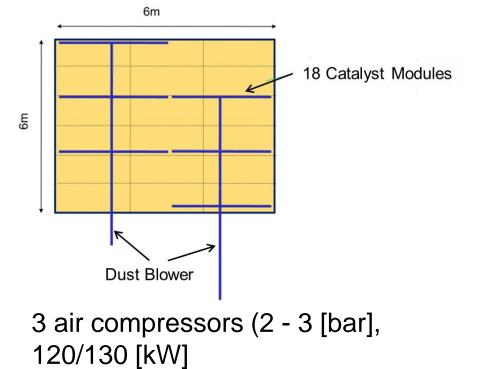
Volker Hoenig, Helmut Hoppe, Martin Oerter, Cornelia Seiler. Verein deutscher Zementwerke (VDZ)

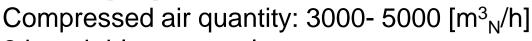
KfW-Aktenzeichen MB e1-001599 www.umweltinnovationsprogramm.de/sites/default/file s/benutzer/36/dokumente/zement_schwenk_ab_scr_ high_dust_2014.pdf

Waltisberg Consulting

SCR Unit

- Supplier:
- Commissioning:
- Type:
- Dimension:
- Flow:
- Raw Gas:
- Reducing Agent:
- Quantity:
- Regulation:
- SNCR:



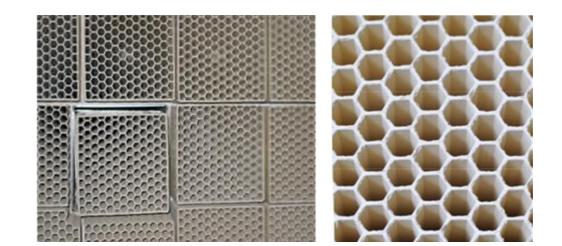

Cemcat / ELEX Mid 2011 «High Dust» (behind preheater) Height 42 [m], with 6[m] Vertically from top to bottom 360 – 420 [°C] maximum 220'000 $[m_N^3/h]$ (normal, wet) 25 [%] NH₃ solution or 40 [%] urea solution Before the top cyclone stage or on stage 6 of the heat exchanger tower Maximum 1'200 [l/h]; 2 Lances Dynamic (via NO signal clean gas) and manual SNCR installation was not eliminated. Combination SNCR + SCR

Catalyst

- Manufacturer:
- Dimensions per layer:

CERAM Frauental (D) 6 x 6 [m] (18 modules per layer / 72 elements per module)

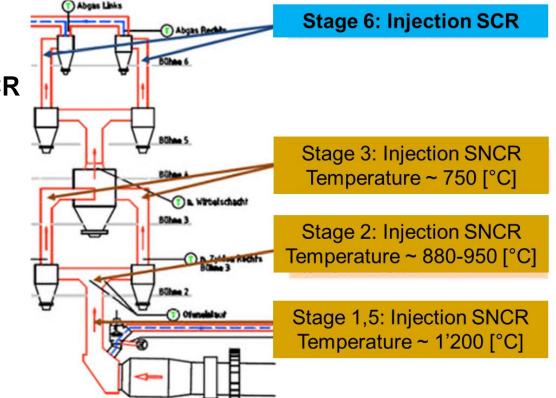
2 hot air blowers per layer


Cleaning:

Catalyst

Type: honeye lowest square
 Pitch: 13.6 [r configure 11.3 [r]
 Composition: Titan c ~ 4.5 -

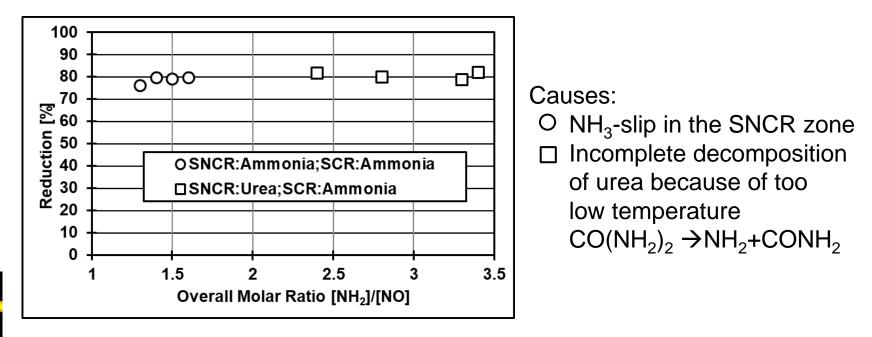
honeycomb catalyst (hexagonal honeycomb) lowest level 4 since 02/2011: square honeycomb 13.6 [mm] Hexagonal honeycomb / initial configuration 11.3 [mm] Square honeycomb Titan dioxide (TiO₂) / tungsten trioxide (WO₃) $\sim 4.5 - 4.7$ [%] Vanadium pentoxide (V₂O₅) ~ 2 [%]



Injection Points SCR + SNCR

Combination SNCR + SCR

- More flexibility
- Catalyst gets smaller
- More consumption of ammonia or urea as pure SCR



Combination SNCR/SCR

Trial with combination SNCR / SCR

- 1. SCR system works with ammonia solution (0, 50, 100, 150 [l / h])
- 2. SNCR plant is regulated to a total reduction of 80 [%]
- 3. SNCR is operated with ammonia solution or with urea solution, SCR with ammonia solution only

Emission between 2010 and 2018

2010/2011 Trial operation Yearly averages (1013 [mbar], 0 [°C], dry, 10 [%] O₂) *) Personal information

Year	NOx [mg/m³]	NH ₃ [mg/m ³]	Availability SCR
2010	254	9	60
2011	231	12	75
2012	196	9	93
2013	192	8	93
2014	185	3	95+
2015-2018 *)	< 200	?	95+

Reduction of Carbon Monoxide (CO) and of Organic Compounds

Carbon Monoxide

No reduction effect in the SCR Installation

Volatile Organic Compound (Total organic Carbon)

- 10 20 [mgC/m³] reduced by approximately 70 [%]
- Smaller reduction of short-chain compounds (C₁ and C₂)

Benzene (carcinogenic substance)

From < 2 [mg/m³] before the SCR to < 0.6 [mg/m³] at the stack

Reduction of Organic Compounds

Polycyclic Aromatic Compounds (PAHs according to EPA 610)

• From 70 to 90 [μ g/m³] before the SCR to < 5 [μ g/m³] at the stack

Polychlorinated Biphenyls (Sum of PCBs according WHO)

- Very low concentration before the SCR plant (<0.02 [ng/m³])
- Reduction in the SCR system, but not exactly determinable
- Reduction rate between < 10 and > 30 [%]

«Dioxins and Furans» - Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/PCDF)

- Reduction rate approximately 50 to 60 [%]
- Emission at the stack < 0.001 [ngTE/m³]

Operating Cost

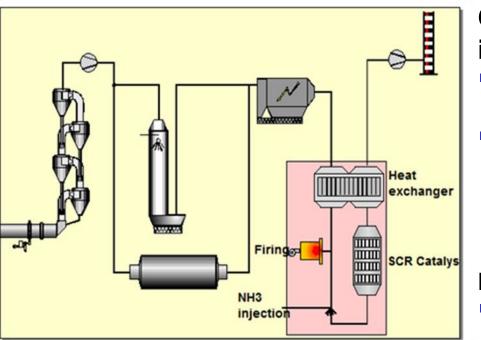
Resources	Determined Need	Specific Operating Costs
Catalyst	1 layer per year	0.30 [€/t Clinker]
Electrical power	5.0 [kWh/t Clinker]	0.40 [€/t Clinker]
Reducing agent	3.5 [kg/t Clinker]	0.42 [€/t Clinker]
Sum		1.12 [€/t Clinker]

«Semi-Dust-Solution» Lafarge Perlmooser GmbH in Mannersdorf (Austria)

Scheuch – Technology for Clean Air Innovative SCR Technologies for NOx-VOC-CO-Odor-Reduction April 2016

Semi Dust SCR

1st Semi-Dust SCR worldwide at Lafarge Mannersdorf, Austria


Design Data:

- > 2500 [t/d]
- Flow:180,000 Nm³/h
- Temp:290°C –350°C
- Dust:180 [g/m³] (before Hot Gas Filter; Electrostatic Precipitator)
- < 2 [g/m³] (after ESP)
- Target:
 - < 200 [mg/m³] NOx (at the main stack)
 - < 20 [mg/Nm³] NH₃
- TÜV Measuring Campaign June 2012

[mg/m ³]	NOx	NH_3	VOC
Bevor SCR	837	235	25
After First Layer	273	21	13
Exit SCR (Stack)	158	2	8

«Low-Dust-Solution»

Catalyst behind the Dust Filter, just in front of the Chimney («Tail End»)

- Low dust content (in general < 10 [mg/m³])
- Gas temperature must be increased to optimal reaction temperature (heat exchanger, additional firing or heat from the clinker cooler)

Example:

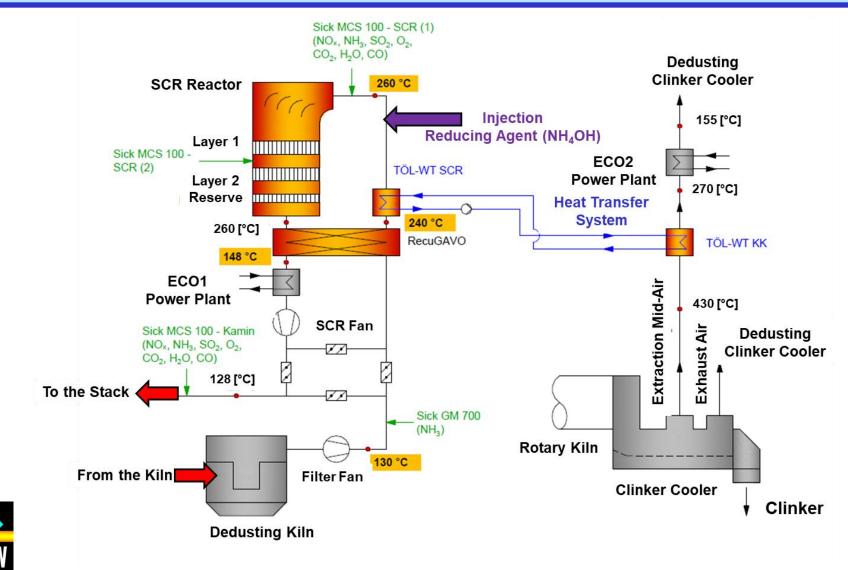
Rohrdorfer Zement
 Südbayerisches Portland-Zementwerk
 Gebr. Wiesböck & Co. GmbH; Germany

«Low-Dust-Solution» Rohrdorfer Zement (Germany)

Literature:

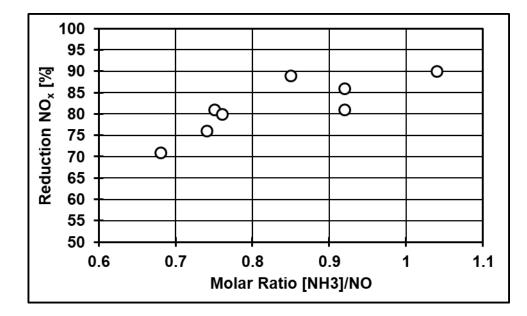
Abschlussbericht zum Vorhaben Katalytische Low-Dust-Entstickung des Abgases an einer Drehofenanlage der Zementindustrie (Reingas – SCR) Dipl.-Ing. Katharina Rechberger, Gebr. Wiesböck & Co. GmbH Dr.-Ing. Nils Bodendiek, Forschungsinstitut der Zementindustrie GmbH KfW-Aktenzeichen NKa3 – 001706 www.umweltinnovationsprogramm.de/si tes/default/files/benutzer/36/dokumente/ abschlussbericht_rohrdorf_final.pdf

SCR Unit


- Supplier:
- Commissioning:
- Type:
- Gas temperature:
- Catalyst:

GEA Bischoff Mid 2011 «Low Dust» (just behind filter system; heat exchanger; additional heat from clinker cooler) 250 [°C] Sinusoidal Titanium dioxide (TiO₂) honeycomb body on a glass fiber matrix, impregnated with around 3 [%] of the active substance Vanadium pentoxide (V_2O_5) . To reduce the SO₂/SO₃ conversion rate about 3 [%] tungsten trioxide (WO_3) was also added.

Design of the «Low-Dust-Installation»


Waltisberg Consulting

Result of different Tests

Campagne		SC	R-I	SC	R-II	SC	R-IV	SC	R-V
Date		Sep 11		Mai 12		Mai 13		Oct 2013	
Operation		С	D	С	D	С	D	С	D
NOx before SCR	[mg/m ³] *)	501	485	671	568	503	586	408	464
NOx after SCR	[mg/m ^{3]} *)	55	68	127	57	121	111	118	93
NOx-Reduction	[%]	89	86	81	90	76	81	71	80
Molar Ratio [NH ₃]/NO	[]	0.85	0.92	0.92	1.04	0.74	0.75	0.68	0.76
NH_3 after SCR	[mg/m ³] *)	1	18	1	10	1	0	0	0

C = Compound Operation D = Direct Operation

*) Normal, dry, 10 [%] O₂

Availability and Bypass of SCR

Bypass of SCR

- 1. Below the required minimum temperature of 248 [°C] at the catalyst outlet
- 2. Exceeding the maximum permitted SO₂ concentration of the exhaust gas of 75 [mg/m³] (Normal, dry, 10 [%] O₂) at the stack
- Exceeding the maximum permissible dust content of the exhaust gas of 10 [mg/m³] (Normal, dry, 10 [%] O₂) at the stack

Availability of SCR

2013 – today: > 95 [%]

Reduction of Carbon Monoxide (CO) and of Organic Compounds

Carbon Monoxide and Volatile Organic Compound (Total organic Carbon)

- The increase in CO concentration was on average around 15 [%], so that the average emission level after the SCR plant was 480 [mg/m³].
- The organic compounds were reduced from 40 to 60 [mgC/m³] to an average of 16 [mgC/m³], reduction around 60 to 70 [%]
- Assuming complete conversion of Volatile Organic Compounds to CO, this equates to a CO increase of about 15 [%]
- Short-chain C₁/C₂ compounds (Methane, ethane, ethene and ethyne) are reduced mostly only to 10 to 30 [%]. Especially for methane no significant decrease was found.

Benzene (carcinogenic substance)

Average reduction around 40 [%]; Average emission level: 1.4 mg/m³]

Waltisberg Consulting Remark: All values Normal, dry, 10 [%] O₂

Reduction of Organic Compounds

Polycyclic Aromatic Compounds (PAHs according to EPA 610)

- Reduction rate of 95 [%], whereas the reduction in the first layer was already 85 [%]
- Average emission around 2.5 [μg/m³] (including naphthalene)
- The emission of benzo(a)pyrene was below the detection limit.

Polychlorinated biphenyls (Sum of PCBs according WHO2005)

- Reduction rate of 75 to 95 [%], whereas in average 75 [%] were reduced in the first layer
- Average emission level: 0.0008 [ng TE/m³]

«Dioxins and Furans» - Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/PCDF)

- Reduction rate of 80 to 95 [%], whereas in average 85 [%] were reduced in the first layer
- Average emission level: 0.003 [ngTE/m³]

Remark: All values Normal, dry, 10 [%] O₂

Behavior of other Compounds

Formaldehyde

- Neither a formation nor reduction of formaldehyde took place in the SCR.
- All measured values were below 1 [mg/m³]

Mercury

The measurements carried out showed that the SCR catalyst influences the oxidation state of the mercury contained in the exhaust gas.

Operation	Measuring Point	lonic Hg [%]	Elementary Hg [%]
	Before SCR	44	56
Compound	After Layer 1	76	24
	After SCR	93	7
	Before SCR	8	92
Direct	After Layer 1	69	31
	After SCR	69	31

Remark: All values Normal, dry, 10 [%] O2

Operating Cost

Resources	Determined	Assumption for	Specific
	Need	Costs	Operating Costs
Catalyst	10 years	49'000 [€/year]	0.05 [€/t Clinker]
Electrical power	5.6	0.07	0.39
	[kWh/t Clinker]	[€/kWh]	[€/t Clinker]
Reducing agent	0.4	0.16	0.06
	[l/t Clinker]	[€/l]	[€/t Clinker]
Sum			0.50 [€/t Clinker]

Thank you for your attention!

